

Exploitation Appraisal System

Systematically Converting the Deep Sea Mining Installation into Proven Technology

Avans conferentie 'Hoe diep wil je gaan?'

25th of November, 2010

The technology innovator.

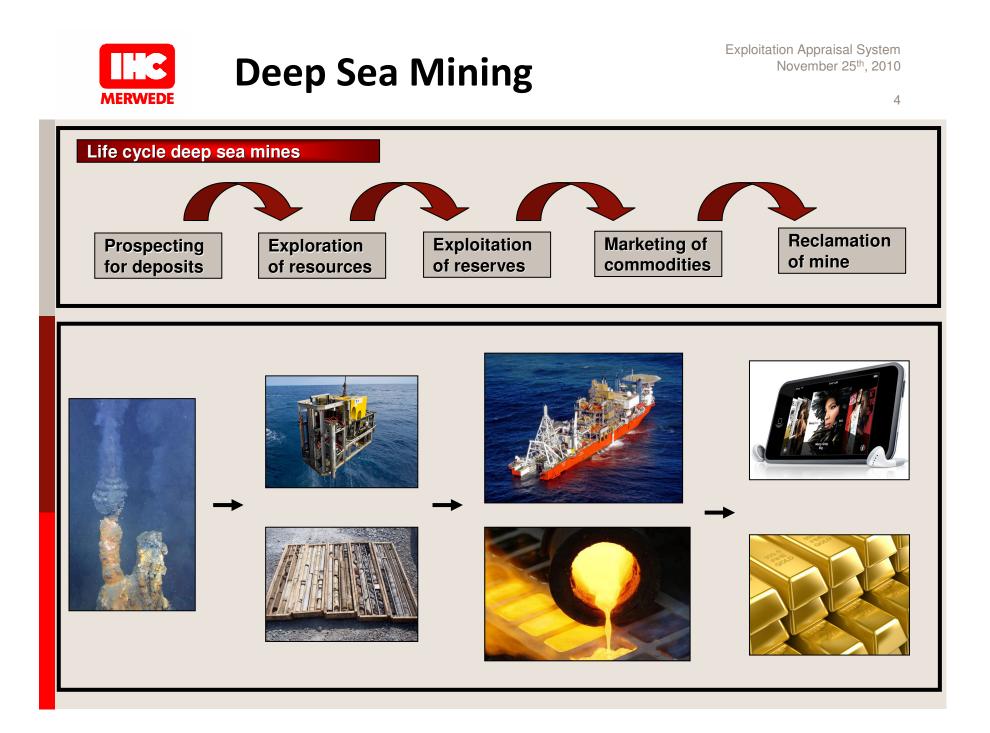
Introduction

- Exploitation Appraisal System business plan
- Project done in 5 months
- Project members
 - 3 engineers
 - 1 marketer
 - 1 consultant

Harm Stoffers

IHC Deep Sea Dredging & Mining Project engineer hd.stoffers@ihcmerwede.com

Fleur Loef


Loef consultants Business Development & Project Management Offshore & Marine Contracting fleur@loefconsultants.com

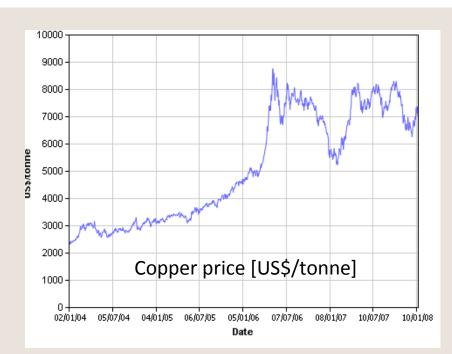
Innovation - Growth - Cooperation

Full scale deep sea mining

Feasibility of full scale mining depends on:

- •Economical
- Environmental
- Technical
- Processing

Vertical Transport System


Seafloor Mining Tool

Economical

- Amount of deposits on seafloor
- Mineral grades in deposits
- Processing of minerals
- Commodity prices

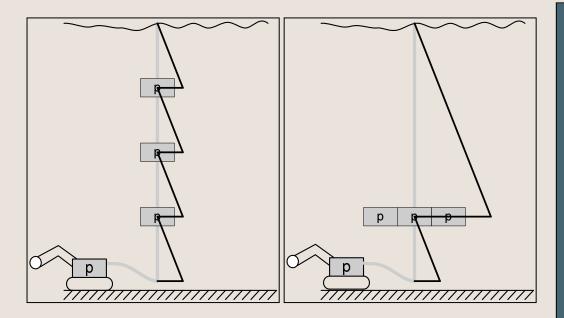
Element	Mid-Ocean Ridges at Divergent Plate Boundaries	Volcanic Island Chains at Convergent Plate Boundaries (range of composition)	
Lead (weight percent)	0.1	0.4 - 11.8	
Iron	26.4	6.2 - 13	
Zinc	8.5	16.5 - 20.2	
Copper	4.8	3.3 - 4.0	
Barium	1.8	7.2 - 12.6	
Arsenic (parts per million)	235	845 - 17,500	
Antimony	46	106 - 6,710	
Silver	113	217 - 2,304	
Gold	1.2	4.5 - 3.1	
Number of samples analyzed	1,259	613	

Grades Seafloor Massive Sulphides

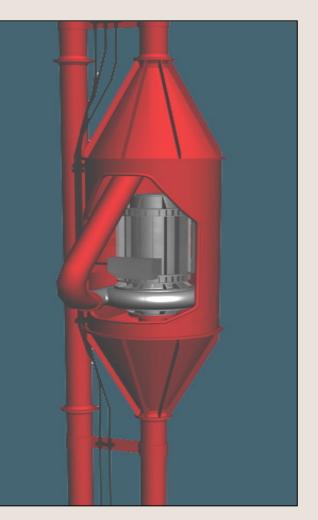


Obtain sustainable mining methods

- Development of rules and regulations
- Mining in non living areas
- •Cooperate with environmental organizations and local authorities
- Technical solutions can be:
 - •Turbidity control
 - •Waste water return


CHALLENGES:

Deep sea excavation


Vertical Transport System

Vertical transport system

- Handling of system
- Dynamic behavior of system
- Large flows combined with high pressures
- Power supply

Recent Experiments and Pilot Projects

MESEDA	Germany	Red Sea	1979	-
DOMES	OMI, OMA, NOAA, USA	Eastern Pacific Ocean	1972-1981	4300 -5100
DISCOL/ ATESEPP	TUSCH Research Group, BMBF, Germany			4135
NOAA-BIE	NOAA,USA CCFZ		1991-1993	4800
JET	MMAJ, Japan	CCFZ	1994-1997	5300
IOM-BIE	Inter-Ocean Metal Consortium	CCFZ	1995	4400
INDEX	National Institute of Oceanography, India Central Indian Ocean Basin		1995-2002	5120-5400
Diets	MMAJ, Japan	Near Minami-Tori-Shima Islands	1998-2002	2200
	KORDI, Korea	Pacific	1995-2015	5000

Metaliferous Mud Mining

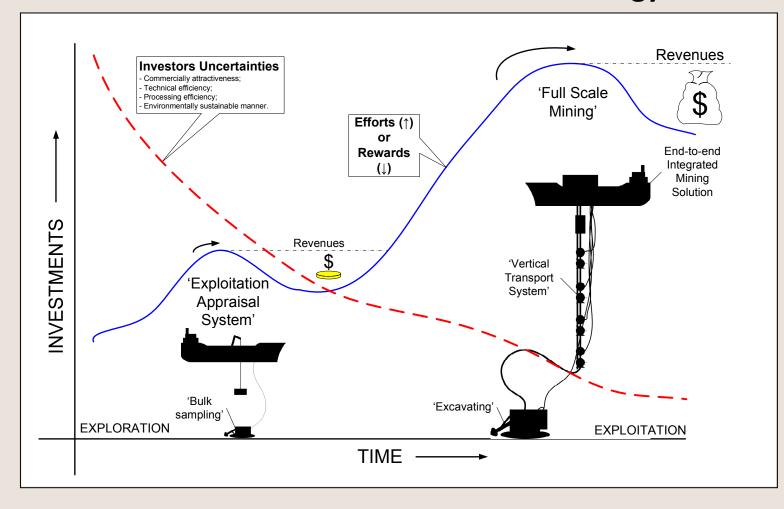
Atlantis II Deep	Preussag, Germany	Red Sea	1994 - today	2000	
	America Carlactic				

Seafloor Massive Sulphides Mining

Solwara Placer Dome, Nautilus Australia 1994 - 1998 1700
--

Summarized

Uncertainties on economical, environmental and technical matters


Development of EASy

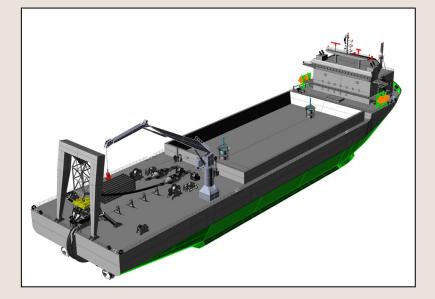
Exploitation Appraisal System

"To create an accessible deep sea mining market for customers by using proven technology in cooperation with our partners."

Systematically converting the deep sea mining installation from academic to industrial technology

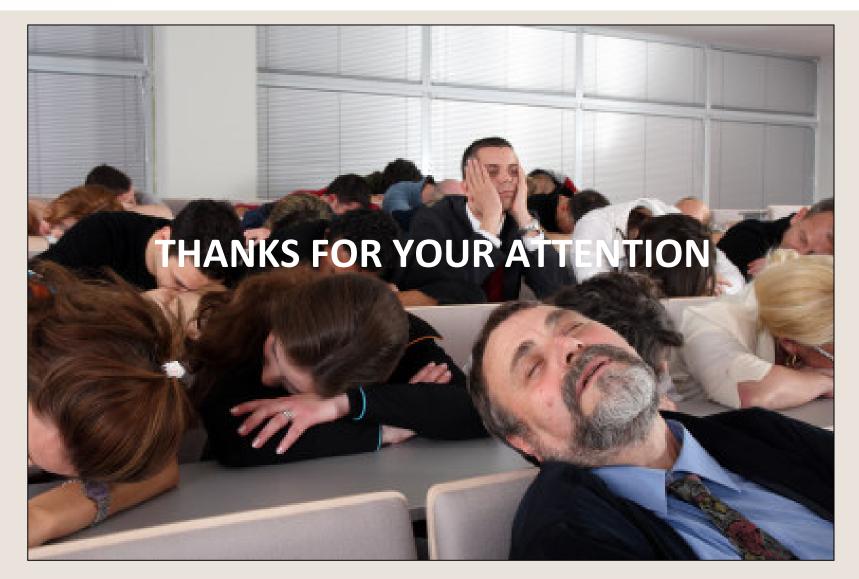
EASy Technology

- Develop mining system lay-out
- Develop technology
- Develop mining method
 - Type of excavation
 - Type of seafloor mining tool
 - Type of vertical transport system
- Collect bulk samples
- Based on rental construction



EASy Technology

- All in one self supporting solution
- One vessel
- Several tonnes of ore
- Modular Seafloor Mining Tool
- Containerized modules



Conclusions

An Exploitation Appraisal System will systematically converting the deep sea mining installation from academic to industrial technology.

